Alternative Local Discriminant Bases Using Empirical Expectation and Variance Estimation

نویسنده

  • Eirik Fossgård
چکیده

We propose alternative discriminant measures for selecting the best basis among a large collection of orthonormal bases for classi cation purposes. A generalization of the Local Discriminant Basis Algorithm of Saito and Coifman is constructed. The success of these new methods is evaluated and compared to earlier methods in experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Local Discriminant Bases Using Empirical Expectation and Variance Estimation

We propose alternative discriminant measures for selecting the best basis among a large collection of orthonormal bases for classification purposes. A generalization of the Local Discriminant Basis Algorithm of Saito and Coifman is constructed. The success of these new methods is evaluated and compared to earlier methods in experiments.

متن کامل

Discriminant feature extraction using empirical probability density estimation and a local basis library

The authors previously developed the so-called local discriminant basis (LDB) method for signal and image classi3cation problems. The original LDB method relies on di4erences in the time–frequency energy distribution of each class: it selects the subspaces where these energy distributions are well separated by some measure such as the Kullback–Leibler divergence. Through our experience and expe...

متن کامل

Local Polynomial Regression and Its Applicationsin

Nonparametric regression estimates a conditional expectation of a response given a predictor variable without requiring parametric assumptions about this conditional expectation. There are many methods of nonparametric regression including kernel estimation, smoothing splines, regression splines, and orthogonal series. Local regression ts parametric models locally by using kernel weights. Local...

متن کامل

Efficient Simulation of a Random Knockout Tournament

We consider the problem of using simulation to efficiently estimate the win probabilities for participants in a general random knockout tournament. Both of our proposed estimators, one based on the notion of “observed survivals” and the other based on conditional expectation and post-stratification, are highly effective in terms of variance reduction when compared to the raw simulation estimato...

متن کامل

Classification via kernel product estimators

Multivariate kernel density estimation is often used as the basis for a nonparametric classification technique. However, the multivariate kernel classifier suffers from the curse of dimensionality, requiring inordinately large sample sizes to achieve a reasonable degree of accuracy in high dimensional settings. A variance stabilising approach to kernel classification can be motivated through an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.NA/9907005  شماره 

صفحات  -

تاریخ انتشار 1999